home *** CD-ROM | disk | FTP | other *** search
- à 4.1 Independent Solutions; The Wronskian
-
- äèCalculate ê Wronskian for ê followng functions (ï
- èèèèèèèê order given)
-
- â Forèeì╣ å eÅ╣
- èè ▒èeì╣èè eÅ╣è │èè │èeì╣èè eÅ╣è │
- W =è│ èèè│è=è│èèèèèèèè│
- èè ▒ [eì╣]»è[eÅ╣]» ▒èè │ 2eì╣èè4eÅ╣è │
-
- èè
- è=è4eÅ╣eì╣ - 2eì╣eÅ╣ = 2eæ╣
-
-
- éS For a SECOND ORDER, LINEAR differential equation,
- êre are two ARBITRARY CONSTANTS required ï ê general
- solution as two ïtegrations (å êir correspondïg constants
- ç ïtegration) are required ë undo ê two differentiations
- done ï developïg ê differential equation.
-
- The HOMOGENEOUS, Initial Value Problem thus requires
- two INITIAL CONDITIONS
- y»» + p(x)y» + q(x)y = 0
- y(x╙)è= y╙
- y»(x╙) = y»╙
-
- If y¬ å y½ are solutions ç ê homogeneous differ-
- ential equation, ên so is
- C¬y¬ + C½y½
- This is known as ê PRINCIPLE OF SUPERPOSITION å is easily
- verified by substitution.
-
- A stronger condition is required ë ensure that all
- solutions ç ê homogeneous, lïear differential can be
- written ï terms ç ê lïear combïation
- C¬y¬ + C½y½
- The two functions y¬ å y½ must be LINEARLY INDEPENDENT å
- form a FUNDAMENTAL SET OF SOLUTIONS.èFor a differential
- equation ç ORDER n, êre are n lïearly ïdependent solutions
- ç ê homogeneous equation.
-
- To get our condition for lïear ïdependence, substi-
- tute ê lïear combïation ïë ê ïitial conditions for
- ê function å its first derivative
-
- C¬y¬(x╙)è+ C½y½(x╙)è=èy╙
-
- C¬y¬»(x╙) + C½y½»(x╙) =èy»╙
-
- This is a system ç two equations ï ê two variables C¬ å
- C½.èIn order for this system ë have a solution for all values
- ç C¬ å C½, CRAMER'S RULE requires that ê DETERMINANT ç
- ê coefficients
-
- èèèè ▒èy¬(x╙)èèy½(x╙)è│
- W(x╙) =è│ èèèèèèè│
- èèèè ▒èy¬»(x╙)èy½»(x╙)è▒
- must be NON-ZERO.
-
- The notation W(x╙) is used å is called ê WRONSKIAN
- ç ê function evaluated at x╙.èThis function is defïed as
-
- èèèè▒èy¬(x)èèy½(x)è│
- W(x) =è│ èèèèè │
- èèèè▒èy¬»(x)èy½»(x)è▒
-
- If ê Wronsian is NON-ZERO for all x ï some ïterval
- ên ê functions y¬ å y½ form a FUNDAMENTAL SOLUTION SET
- å ê GENERAL SOLTUION IS
- y = C¬y¬ + C½y½
-
- è In all ç ê cases ç ê LINEAR, CONSTANT COEFFICIENT
- SECOND-ORDER differential equations given ï CHAPTER 3, ê
- solutions given form FUNDAMENTAL SOLUTION SETS
-
- 1 e╣ å eÄ╣
-
-
- A) 4eì╣ B) 2eÅ╣
-
- C) 4eúì╣ D) 2eúÅ╣
-
- ü For e╣ å eÄ╣, ê Wronskian is
-
- èè ▒èe╣èè eÄ╣è │
- W =è│ èè │
- èè ▒ [e╣]»è[eÄ╣]» ▒
-
-
- èè ▒èe╣è eÄ╣ │
- è=è│ │
- èè ▒èe╣è3eÄ╣ ▒
-
- è=è3e╣eÄ╣ - e╣eÄ╣
-
- è=è2eÅ╣
-
- As W is never zero, êse solutions form a fundamental set
- ç solutions for all reals.
-
- Ç B
-
- 2 eÄ╣ å eúì╣
-
-
- A) e╣ B) 5e╣
-
- C) -e╣ D) -5e╣
-
- ü For eÄ╣ å eúì╣, ê Wronskian is
-
- èè ▒èeÄ╣èè eú2╣è │
- W =è│ èèè │
- èè ▒ [eÄ╣]»è[eú2╣]» ▒
-
-
- èè ▒è eÄ╣èèeúì╣ │
- è=è│ èè │
- èè ▒è3eÄ╣è-2eúì╣ ▒
-
- è=è-2eÄ╣eúì╣ - 3eÄ╣eúì╣
-
- è=è-5e╣
-
- As W is never zero, êse solutions form a fundamental set
- ç solutions for all reals.
-
- Ç D
-
- 3 sï[2x] å cos[2x]
-
-
- A) -2 B) 4sï[2x]cos[2x]
-
- C) 2{sïì[2x] - così[2x] D) 4
-
- ü For sï[2x] å cos[2x], ê Wronskian is
-
- èè ▒èsï[2x]èèècos[2x]è│
- W =è│ èèèèèèè│
- èè ▒ {sï[2x]}»è{cos[2x]}» ▒
-
-
- èè ▒è sï[2x]èècos[2x] │
- è=è│ èèèèèè│
- èè ▒è2cos[2x]è-2sï[2x] ▒
-
- è=è-2sï[2x]sï[2x] - 2cos[2x]cos[2x]
-
- è=è-2{sïì[2x] + così{2x}}
-
- è=è-2
-
- As W is never zero, êse solutions form a fundamental set
- ç solutions for all reals.
-
- Ç A
-
- 4 x å xì
-
-
- A) 2xÄ - x B) xì
-
- C) x - 2xÄ D) 2xÄ + x
-
- ü For x å xì, ê Wronskian is
-
- èè ▒èxèèèxìè│
- W =è│ è │
- èè ▒ [x]»è[xì]» ▒
-
- èè ▒èxè xì │
- è=è│ èèè │
- èè ▒è1è 2x ▒
-
- è=è2xì - xì
-
- è=èxì
-
- As W is zero only at x = 0, êse solutions form a fundamental
- set ç solutions for eiêr ê ïterval x > 0 or ê ïterval
- x < 0.
-
- Ç B
-
- 5 e╣sï[x] å e╣cos[x]
-
-
- A)èèeì╣{1 - 2sï[x]cos[x]} B)è eúì╣
-
- C)èèeì╣{2sï[x]cos[x] - 1} D)è -eì╣
-
- ü For e╣sï[x] å e╣cos[x], ê Wronskian is
-
- èè ▒èe╣sï[x]èèèe╣cos[x]è│
- W =è│ èèèèèèèè│
- èè ▒ {e╣sï[x]}»è{e╣cos[x]}» ▒
-
-
- èè ▒èèè e╣sï[x]èèèèèèèe╣cos[x]èèè │
- è=è│ èèèèèè è│
- èè ▒èe╣cos[x] + e╣sï[x]è-e╣sï[x] + e╣cos[x] ▒
-
- è=è-e╣sï[x]e╣sï[x] + e╣sï[x]e╣cos[x]
- èè -e╣cos[x]e╣cos[x] - e╣cos[x]e╣cos[x]
-
- è=è-eì╣{sïì[2x] + così{2x}}
-
- è=è-eì╣
-
- As W is never zero, êse solutions form a fundamental set
- ç solutions for all reals.
-
- Ç D
-
-
-
-
-
-